Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring

نویسنده

  • J. H. Fink
چکیده

Michael S. Ramsey (Y) 7 Jonathan H. Fink Department of Geology, Arizona State University, Box 871404, Tempe, Arizona 85287–1404, USA Fax: c602 965 1787 e-mail: ramsey6elwood.la.asu.edu Abstract Remote monitoring of active lava domes provides insights into the duration of continued lava extrusion and detection of potentially associated explosive activity. On inactive flows, variations in surface texture ranging from dense glass to highly vesicular pumice can be related to emplacement time, volatile content, and internal structure. Pumiceous surface textures also produce changes in thermal emission spectra that are clearly distinguishable using remote sensing. Spectrally, the textures describe a continuum consisting of two pure end members, obsidian and vesicles. The distinct spectral features of obsidian are commonly muted in pumice due to overprinting by the vesicles, which mimic spectrally neutral blackbody emitters. Assuming that this energy combines linearly in direct proportion to the percentage of vesicles, the surface vesicularity can be estimated by modeling the pumice spectrum as a linear combination of the glass and blackbody spectra. Based on this discovery, a linear retrieval model using a least-squares fitting approach was applied to airborne thermal infrared data of the Little Glass Mountain and Crater Glass rhyolite flows at Medicine Lake Volcano (California) as a case study. The model produced a vesicularity image of the flow with values from 0 to F70%, which can be grouped into three broad textural classes: dense obsidian, finely vesicular pumice, and coarsely vesicular pumice. Values extracted from the image compare well with those derived from SEM analysis of collected samples as well as with previously reported results. This technique provides the means to accurately map the areal distributions of these textures, resulting in significantly different values from those derived using aerial photographs. If applied to actively deforming domes, this technique will provide volcanologists with an opportunity to monitor dome-wide degassing and eruptive potential in near-real-time. In July 1999 such an effort will be possible for the first time when repetitive, global, multispectral thermal infrared data become available with the launch of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) instrument aboard the Earth Observing System satellite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote Sensing Observations for Volcano Monitoring and Hazard Mitigation

Volcanic eruptions are spectacular but dangerous phenomena to study on-site, and they present many challenges because of the diversity of activity and their remote locations. Indeed, the tragic loss of life at Galeras and Mt. Unzen volcanoes in the early 1990s illustrates the dangers associated with studying active volcanoes at close quarters. However, much progress has been made in volcano rem...

متن کامل

Low Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring

In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...

متن کامل

The Use of Surveillance Cameras for the Rapid Mapping of Lava Flows: An Application to Mount Etna Volcano

In order to improve the observation capability in one of the most active volcanic areas in the world, Mt. Etna, we developed a processing method to use the surveillance cameras for a quasi real-time mapping of syn-eruptive processes. Following an evaluation of the current performance of the Etna permanent ground NEtwork of Thermal and Visible Sensors (Etna_NETVIS), its possible implementation a...

متن کامل

Remote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)

To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...

متن کامل

Remote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)

To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997